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A numerical method to determine the eigenfrequency of a mechanical system, using 
the fmite-difference approximation and Fourier analysis, is presented. This method is 
powerful for the cases in which the medium is heterogeneous and the boundary is 
complicated. This is also advantageous when the degree of freedom of the system is 
very large. As examples, several cases of string and membrane vibration are studied. 

The problem of determining the eigenfrequency of a mechanical system has been 
studied for a long time and various methods have been presented by many authors. 
Of those methods, the semiexperimental procedure, in which the elastic vibration 
is experimentally excited by using supersonic technique and then the result is 
numerically analyzed by means of Fourier analysis, is adopted for the actual study 
of the elastic vibration problem. This method, however, is not necessarily semi- 
experimental, but we can work exclusively numerically by use of simulation. We 
can numerically calculate the disturbance which was caused by the excitation 
applied at any one of several points in the system, and then analyze these disturb- 
ances again numerically. 
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STRING VIBRATION 

Homogeneous String 

As an example a fundamental problem of string vibration is first studied. The 
differential equation of motion is 

ml = (l/c”)(a%4/w) 

in which V2u = @u/ax2 and c is the propagation velocity. 
This form of equation is modified to the following difference equation 

u(t + At; x) = 2u(t; x) - u(t - At; x) + (c . At)2 . V%, 

where 

(1) 

(2) 

v% = (u(t; x + Ax) - 2 . u(t; x) + u(t; x - Ax)>/(Ax)~ 

with which we can proceed one step in the time domain and calculate the disturb- 
ance at time t + At using the data at t - At and t. 

The initial condition at t = 0 is given as 

MC $lt=o = w, [(apt) u(t; x)lt+J = 0 (3) 

and the disturbance at t = At is calculated not by Eq. (2) but by the following 
formula 

u(At; x) = U(x) + ; - [$1, o (At)2 

= U(x) + ; * (g)” [U(x + Ax) - 2U(x) + 2U(x - Ax)]. (4) 

On the other hand the displacement u(t; x) thus obtained can be expressed 
using the eigenfunction ek(x) and the eigenfrequency p, in the following way 

u(t; x) = C Akek(x) + exp(i&t). 
k 

(5) 

Consequently, by the Fourier analysis of u(t; x), pk is obtained as the peak 
frequency of the spectrum, and the spectrum amplitude 

&4Pk) = J”“, u(t; x) . exp(-ip&) * dt 

is nothing but e&c) except a constant factor. Table I-A and Fig. 1 give the result 
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of numerical calculation in which the following values are employed: 

Length of the string = 1.0, 
Propagation velocity = c = 1 .O, 
Interval of x = dx = l/15, 
Interval of t = d t = l/20. 

TABLE I-A 

Eigenvalues pk of a Uniform String in Degree. Theoretical Values Show ng. 
Vibration of a uniform string 

(Angular velocity in degree) 

Mode 

1st 

2nd 

3rd 

4th 

5th 

6th 

7th 

8th 

9th 

10th 

11th 

Theory 

180 

360 

540 

720 

900 

1080 

1260 

1440 

1620 

1800 

1980 

x = O(O.06667) 1.0 

Numerical 

179.8 

351.7 

532.4 

702.0 

864.8 

1019 

1163 

1296 

1414 

1605 

The time step is taken a little smaller than the critical value determined by the 
stability condition throughout the following calculations. 

u(f; x) is calculated for all the points x = l/15, 2/15,..., 14/15 for the time range 
t = O-40.0. The eigenfrequency given by the Fourier analysis has good precision 
as shown in Table I-A. For the fundamental mode the error is only about 0.1x, 
though for the higher modes it increases gradually. 
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FIG. 1. Fundamental mode and the first higher mode of a string vibration, showing sin KX 
and sin 2n.x. Arrow indicates the point of excitation where the initial displacement was given. 
Initially no displacement was given at the other points. 

This increase of error helps us to estimate the dependence of the accuracy 
on dx. The error, when dx is doubled or tripled, will be nearly equal to that for 
the 2nd and 3rd mode, respectively. The result, however, scarcely depends on the 
initial displacement U(X), and the answers come out identically except for one or 
two units in the last digit for different U(X). The form of U(x), which takes a value 
different from zero only at a point next to the fixed end, was used because of an 
advantage that all the eigenfrequencies are obtained by a single calculation, The 
form of eigenfunction determined by spectrum amplitude is illustrated in Fig. 1, 
which shows sine curves, as expected theoretically, with slight irregularity. The 
time range was changed and the calculation repeated. As is shown in the following 
table the result came out amazingly constant in spite of the wide variety of time 
ranges. 

Time range O-10 O-20 O-30 &40 O-50 O-60 

Angular (1st mode) 

1 

179.6” 179.8” 179.8” 179.7” 179.8” 179.8” 
velocity (2nd mode) 357.6” 357.7” 357.7” 357.7” 357.7” 357.8” 

Heterogeneous String 

Even if the string is not uniform the numerical procedure undergoes a change 
but little. As an example 

c2 = c”(x) = a + b . cos(277x) (0 <x < I> 6-9 

was assumed and the numerical solution was tried for the values a = 1 .O, b = 0.1. 
For the fundamental mode 

p = 1.023 (= 58.8”) 
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is given by the present method, which value, however, is also calculated from the 
approximation formula of Mathieu function [l] with two parameters a and b, and 

p = 1.026 

is obtained. This fact suggests that the eigenvalue of Mathieu function could be 
found from the present method of simulation. 

TABLE I-B 

Eigenvalues of a Square Membrane in Degree. Theoretical Values Correspond to 

g * z/w + Id) (n, m = 1, 2, 3...) 

Vibration of a square membrane 
Size = 6.2832 x 6.2832 (Division 12 x 12) 

(Angular velocity in degree) 

Mode Theory Numerical 

0 0 40.51 40.6 

1 64.06 63.6 

2 90.59 89.3 

3 118.12 114.8 

4 146.08 144.0 

1 1 81.03 80.4 

2 103.29 102.3 

3 128.12 125.6 

4 154.28 148.5 

2 2 121.54 120.2 

3 143.24 141.2 

4 167.05 162.6 

3 3 161.82 159.7 
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RECTANGULAR MEMBRANE 

Similar procedure can be applied to the two-dimensional problem. The funda- 
mental equation is not different from Eq. (1) except that 

vu = p/ax2 + a2jay2) . u 

= (u(t; x + Ax, y) - 2u(l; x, Y) + 4c x - Ax, Y)ww2 

+ MC x, Y + AY) - 24t; x, Y) + u(c x9 Y - 4M~Y)2. (7) 

TABLE II-A 

Eigenvalues pk of a Circular Membrane in Degree. Theoretical Values Correspond to 180/n . pea , 
Where pok Is the k-th Root of Jo(p) = 0.” 

Vibration of a circular membrane 

(Angular velocity in degree) 

Mode Theory Numerical 

Radial Azimuthal 
Polar 
coord. 

Rectangular 
coord. 

0 137.8 
1 219.6 
2 294.3 
3 365.5 

0 316.3 

1 402.0 
2 482.3 
0 495.5 

0 675.6 

137.8 
218.6 
289.7 
344.3 

314.7 

398.6 
474.0 
489.7 

660.5 

division 
(R-direction) 

.LE. 14 

137.0 
216.5 
290 
- 

306 

382 
455 
- 

- 

DX=DY 

= R/4 

a Mesh sizes are chosen from the values AR = &$ A0 = lo”-30”, depending on the number 
of nodes. 
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As a simple and basic problem a square membrane with all the edges fixed is 
studied. The initial condition is given with no essential difference from the one- 
dimensional problem. The answer for a square (size = 277 x 2~, divided into 
12 x 12; the initial displacement assumed at x = 27r . (2/12), y = 27-r * (4/12) and 
no other points) is shown in Table I-B together with the exact theoretical answer. 

CIRCULAR MEMBRANE 

Circular membranes can be treated similarly to the previous problem. In this 
case polar coordinates are conveniently used and the formula 

is employed instead of Eq. (7). [For the center of the circle, the formula referred 
to rectangular coordinates V2u = (a2/8x2 + a2/8y2) . u is used to avoid the difficulty 
that comes from r = 0.1 The rectangular coordinates, however, are also usable. 
In this case the boundary condition is given using the formula for an irregular star 
based on the linear interpolation [2]. 

Table II-A gives the result of both calculations. The last column based on the 
rectangular coordinates has a precision poorer than the other, but this is a natural 
consequence if we remember the coarse interval employed in this solution, and the 
form of eigenfunctions that came out as the spectral amplitude is adequate showing 
the distribution of Bessel function J,(x) in Fig. 2. 

FIG. 2. Fundamental mode (0) and the first higher mode (0) of circular membrane. Numbers 
on curves correspond to the points in the quadrant. The initial displacement is assumed at the 
point 2. 
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MEMBRANE BOUNDED BY CONCENTRIC CIRCLES 

Two concentric circular edges r = r1 and r = r2 add no difficulty to the case of 
a simple circular membrane. The solution was obtained by two methods, first using 
the formula (8) and second transforming Eq. (8) by the formula p = log r into 

V2u = exp(-2p) + i+ + $1 * u. 

No distinction can be found in the precision between two methods, and the 
answer is given in Table II-B, 

As is seen in this table, the frequencies in the 1st (O-O mode) and 2nd (O-l mode, 
one diameter as a mode) lines differ but little, and if r, approaches r2 this difference 
will become even smaller. This is a situation that causes difficulty to numerical 
methods. In such a case, however, the present method works usefully, because by 
assuming the initial displacement with a circular symmetry the asymmetric modes 
are suppressed, while by the asymmetric initial displacement, the fundamental mode 
is removed, and thus the neighbouring frequencies are easily obtained separately. 

TABLE II-B 

Eigenvalues pk of a Circular Membrane with a Core in Degree. 
Vibration of a circular membrane with a core 

(R, = O.&R2 = 1.0) 

Mode (Angular velocity in degree) 

Radial Azimuthal Theory Numerical 

0 357.9 

1 366.3 
2 390.4 

0 718.9 
1 123.4 

0 1079.2 

357.2 

365.6 
389.0 

715.4 
719.7 

1059.8 
number of division 

in R-direction 
= NR .LE. 14 
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Similarly, if the points are picked up which are on the nodal line of a certain mode, 
the spectra at those points lack the line corresponding to that mode, and in this way 
the resolving power of the analysis is increased. In the present example, which is 
not very much ill-natured, all the frequencies could be obtained by the initial 
displacement which is all zero except at a single point, if the time range is taken 
long. The above technique, however, was successfully tested in this case with 
improvement of accuracy and saving of computer time. 

MEMBRANE BOUNDED BY ECCENTRIC Two CIRCLES 

The eigenvibrations of a membrane bounded by eccentric two circles were 
calculated by one of the authors using the perturbation method for the case of 
small eccentricity [3]. A similar procedure as the previous section, however, can be 
applied for this kind of problem, too. By the use of bipolar coordinates e and ‘I, 
which are connected with the original coordinates x and y by the transformation 
formula 

x = a . sinh E/(cosh E + cos 19), 
y = a . sin B/(cosh t + cos O), (10) 

the Laplacian is given as [4] 

i “+$)u.( cash $ + cos tJ 2 
v2u = at2 a 1 5 

FIG. 3. Variation of the eigenvalues of the fundamental and the first higher modes for a 
membrane bounded by eccentric two circles. Fundamental mode for D = 0 (concentric circles) 
is the root of J&r,) . No(kr,) - N,(kr,) . J,(kr,) = 0 and the first higher mode for D = 0 is 
the root of J,(kr3 * Nl(kr2) - N,(kr3 * J,(kr,) = 0. 



a 

p = 70.00 
= 1.236 

FIG. 4(a-b). Oscillation of an L-shape membrane. The numerals, which are proportional 
to the displacement, and contour lines show the form of oscillation. Black circle is the point 
of excitation where the initial displacement was given. No displacement was given to the other 
points. Including this initial condition all the parameters for computation are same as the problem 
of square membrane. (a) Fundamental mode. (b) First higher mode of an L-shape membrane, 
solid and broken lines show positive and negative displacements respectively. Chain line is the 
nodal line. 
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FM. 4(c-d). (c) Second higher mode; mode of oscillation of every one of three squares is the 
same, showing the fundamental mode of a single independent square membrane. (d) Third higher 
mode. 
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where the parameter a is 

a2 = (rz2 - r12 - D2)2/4D2 - r12. (12) 

r, , r2 are the radii of inner and outer circles, respectively, and D is the distance 
between the two centers. The equations of the two circles referred to new coordi- 
nates are given by 

L2 = b3{Wrl,2) + dlWl,2)2 + 11). (13) 

Numerical results for the eccentricity not so small as the previous study are shown 
in Fig. 3, where the solid lines are the results obtained by the perturbation method 
and the circles are the values obtained by the present method. 

The technique explained in the previous example is also used in this case. 
A( = l/15, AtI = 15” are used in most of the calculations for this example. 

L-SHAPE MEMBRANE 

As the example of a problem with a special form of boundaries for which the 
present method has an advantage, the oscillation of an L-shape membrane was 
solved. Except the boundary form, which is an L-shape, a quarter of a square 
removed, the equations are not different from those in Eq. (7). The initial condition, 
the grid spacing and the time step are the same as the problem of a square. 

The answer is obtained for the first four modes and is given in Fig. 4. The 
numerals, which are proportional to the displacement, and contour lines show 
the form of oscillation. 

The second higher mode [Fig. 4(c)], in which the membrane is divided into three 
identical squares, shows a feature like the oscillation of a square membrane with 
two crossing nodal lines, and suggests the legitimacy of the present treatment. 
The eigenfrequencies of both cases lie within a small computational error and the 
eigenfunction given by the numerals in an individual square is as expected, showing 
a feature of the fundamental mode of a square. 

DISCUSSION AND CONCLUSION 

The present method based on the numerical simulation will be of use for the 
determination of eigenfrequencies as well as eigenfunctions of mechanical systems 
such as string, membrane, beam, plate and so on. 

The Rayleigh-Ritz method, useful in many problems, requires an approximate 
form of eigenfunctions in advance. This is, however, not always easy when the 
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boundary shape is complicated and the medium is heterogeneous. The difficulty 
increases for higher modes, for which the approximate form of eigenfunctions is 
not easy to obtain. Actually, in the study of the eigenfrequency of the earth, this 
difficulty proved to be a big barrier [5]. In such a case the present method is 
powerful. It can be used without any knowledge of the form of eigenfunction, and 
if the knowledge about the nodal lines and the symmetric property of modes are 
added, the resolving power is increased by an appropriate choice of the initial 
displacement. In this way neighboring spectral lines are obtained separately by the 
removal of disturbing modes, and besides, the eigenfunction is obtained as the 
spectral amplitude together with the frequency as the result of Fourier analysis. 
This is also a desirable property of this method. 

Compared with the method in which all the displacement components are 
calculated as the roots of linear algebraic equations, this is not an economical way 
of computation when the degree of freedom of the system, N, is not large. For 
one-dimensional problems or two-dimensional problems with simple boundary 
forms the value of N is at most several hundreds, and matrix calculation will not 
be difficult. However, the problems with complicated boundaries or strongly 
heterogeneous media require a fine grid spacing, and N easily becomes 1,000 or 
more. In the problems of elastic solids, in which according to the dimensions of the 
space, two or more unknowns have to be assumed for one point, N often becomes 
as large as 10,000. In such a case the situation changes. The handling of so many 
unknowns, though feasible in principle, would clearly make heavy demands on 
computer time, expense and technique. If the present method is employed for the 
above size of problem, no special technique is necessary, and a middle size computer 
(say, 32K word available core memory) is enough, the computer time being only 
proportional to N, and neither to N2 nor to N3. 

The numerical computation was carried out by UNIVAC 1108 through the 
project UNICON. 
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